Hochdruckversuche In 1

Rica/Re. 15. 9. 1943.

Ausammenfassung.

Statisch und unter einem Wasserstoffdruck von 200 bis 250 atm mit K 5058 durchgeführte Versuche haben folgende Ergebnisse:

Die Geschwindigkeit der Spaltung hängt sehr stark von der Kettenlange ab. Während Athen bei 24 mV noch vollkommen beständig ist, zerfällt Propen bei dieser Temperatur bereite mit einer Halbvortszeit von 20 bis 40 Stunden. Bei 22 mV ist Propen ebenfalls
noch beständig, während Buten mit einer Halbwertszeit von 5-10 Stunden serfällt und n-Hepten innerhalb von 1 Stunde bereits in durchsobnittlich 2, Cetan in durchschnittlich 4 Bruchstücke gespalten ist (Helbwertsseiten siehe Kurvenblatt 5).

Verzweigte Paraffine warden erhablich schnoller gespekten als Hormalparaffine, Isooktan s. Bap. etwa 20 mal schneller als n-liepten bei gleicher Temperatur. Aus Isooktan entsteht dabei zunßehst fast reines Isobutan, während n-Heptan bei niederer Temperatur hauptsächlich Butan mit einem Isogehalt von rund 50 % und Propenten bei hoheren Temperaturen in zunehmendem Maße Äthen und schließlich Methen liefert (s. Kurvenblatt 4).

Die scheinbare Aktivierungswärme für die Spaltung der Paraffine durfte in der Größenordnung von 20 koal liegen.

Für den Mechanismus der hydrierenden Speltung von Paraffin-Roblenwasserstoffen an Wolframsulfid (und wahrscheinlich auch an anderen isomerisierenden Kontakten) ergibt sich folgendes wahrscheinliche Bild:

Isoparaffine können direkt gespalten werden, wobei die Spaltung am wasserstoffarmsten C-Atom einsetzt, d.h. beim Vorliegen oines wasserstofffreien C-Atoms wie im Isooktan an diesem. In der Magel wird dabei die längste Kette an dem betreffenden O-Atom abget spalten, bei hohen Temperaturen wird eber auch die Abspaltung sozor von Methen merklich.

Der Spaltung von Hormalparaffinen, vielleicht mit Ausnahme des n-Butans, geht ihre Isomerisierung vorauf, wobei vermutlich in der hegel eine Methylgruppe in 2-Stellung, seltener in 3-Stellung (oder einer enderen Stellung) entsteht. Diess Isomerislerung erfordert eine höhere Temperatur als die Spaltung des entstandenen Isoparaffins, die nach den obigen Regeln erfolgt, woraus sich die Briahrungsregeln ergeben, das Normalparaffine gegen die Spaltung bestündiger sind els Isoperaffine und de oine Isomerisierung der höheren Paraffine ohne gleichzeitige mericiehe Spaltung nicht mög lich ist. Längere Ketten werden durch ein Aufeinanderfolge von Isomericierungen und Spaltreaktionen abgulaut.

Als Folge der Isomerisierung vor der Spaltung kann das bei der Spaltung entstandene Butan einen höheren Isogehalt aufweisen, als nach der Lage des thermodynamischen Gleichgewichtes zwischen n- und iso-Butan bei der Spalttemperatur zu erwarten wäre.

Ausführung der Versuche.

Die vorliegenden Versuche zur hydrierenden Spaltung reiner Paraffinkohlenwasserstoffe an K 5058 unter einem Wasserstoffdruck yon etwa 200 bis 250 atn gurden statisch durchgeführt. Der verwendete Autoklaw 415 hatte bei den ersten 4 Versuchen ein Volumen von 2,86 Ltr., bei den folgenden Versuchen ein Volumen von 3,54 Ltr., da ein anfangs vorhandenes Aluminiumfutter entfernt wurde. Der Autoklav enthielt in einer Hulse aus V2A-Drahtnetz 1 Ltr. Kontakt 5058 (Faß 2112 - 51, 10 mm Pillen, 2320 g); mit der gleichen Kontaktfüllung wurden jeweils mehrere Versuche durch gefuhrt, mit frischem Kontekt wurden nur die Versuche 1,5 und 10 (vgl. Ubersicht über die Versuche weiter unten) gefahren. Be wurden jeweils 100 g Kohlenwasserstoff verwendet und swar bei den höheren Kohlenwasserstoffen direkt in flüssiger Form, während das Propan gasförmig aus einer auf etwa 500 geheizten Flasche enteprechand einem Druck von etwa 15 atm in den auf etwa 800 geheizten Autoklaven eingefüllt wurde. Der Autoklav wurde dann mit etwa 124 atm Wasserstoff aufgefüllt und hoohgeheigt, wobei die Sonaukervorrichtung solange betätigt wurde, bis mit Sicherheit keine flüssigen Anteile mehr vorlegen. Die Aufheisgeschwindigkeiten in dem Gebiet vor Erreichung der Solltemperatur (s. Versuchsibersicht) waren teilweise recht langsam, sodaß eine gonaus zeitliche Festlegung des Reaktionsbeginnes nicht möglich ist. In verschiedenen Zeitabständen nach Erreichen der Soll-Temperatur bis zur Beendigung des Versuches nach 24 oder bisweilen 32 Stunden wurden Gasproben entnommen, von denen tech-nische Analysen und meist auch Podbianalysen ausgeführt wurden. Bei einem Teil der Versuche wurden außerdem auch bei Erreichen der Solltemperatur Analysen genommen. Nach Beandigung der Versuche wurde der Autoklaveninhalt bei einer Temperatur von 80 bis 130 (je nach dem Ausgangsatoff) langsam über 2 hintereinandergeschaltete Tiefkühler entspannt und der Tiefrühler. anfall ebenfalls analysiert.

übersicht über die durchgeführten Versuche.

Mile icerese			, man in the contract of the state of the st	THE PARTY SECURED CONTRACTOR OF THE PARTY OF	A THE PARTY OF STREET OF STREET, THE PARTY OF STREE	100mmには10mmに対象のでは10mmには10mmには10mmに10mmに10mmに10mmに10mmに10
	Datum	Produkt	Verso-Tempe- ratur (Aufheizge- schwindigsit der letzten Stunde)	Erreiohter Maxieldruck und End- druck	Tiefkühler- enfall in g beim Ent- spannen	Bemer- kung
3.	16/17-4-43	Propen	22 mV (1,5mV)	308 at/210	ohne ToKo	frischer Kontakt
2	22/23.4.	n-Reptan	u (1,0")	250/140	শঞ্চ বাচ্চ	
٤	26/28.4.	Propan	24 " (2,0")	305/148	40	
4	29/30.4.	R ; >	- 	Autoklav undicht	agg villa	Versuch un- brauchbar
5	1/2.5.	h-Haptan	22 " (4,0mV in 1/28to	885/246)	(35 g H ₂ O aus Kont.	<u> </u>
6	4/5.5.	FF.	24 " (0,8)	276/242	(6g n n.	
7	5/6.5.	n .	22 " (1,0)	250/198	21	
B	7/8.5.	Cetan	22 1 (2,0)	242/62 (etwas un- dicht)	10	
9	8/9.5.	n-Hepten	(22)	Autoklav undicht		Versuch un- brauchbar
10	13/14.5.	a	22 "(3,0in 1/28td.)	245/212	24	frischer Kontakt mit He unter
11	16/17.5.	Propan	24 (2,8)	300/252	12	Druck 3 Std.bei
75	19/20-5-	n-Heptan	20 (0,5)	242/200	89	22 mV redu- ziert
613	21/22.5.	n	23 (2,5)	215/162	15	
7.4	23/24.5.	**	21 (1,6)	236/214	83	
9.5	26/27.5.	Propan	20 (3,2)	278/240	(10, nicht untersuc	nt)
16	28/29.5.	42	24 (3,4)	300/255	7, ")
17	30.5./1.6.	Isooktan	20 (3,0)	170/165	66	

Versuche mit Propan.

1) 20 my = 391 00 (Vers. Hr. 15).

Innerhalb von 24 Stunden findet offenbar noch kein merklicher Umsatz statt, denn bei der technischen Gasanalyse ergab sich das mittlere C von der 1. bis 24. Stunde konstant zu 2,9. (Die Ergebnisse der Podbianalysen weichen allerdings hiervon ab. Hier wurden nämlich nach der 1. Stunde neben C2H8 noch 22 % C4H10 gefunden, degegen bei den spätoren Analysen nach der 4., 8. und 24. Stunde 25 - 30 % C2H6 und nur noch 2,5 % C4H10 neben C3H8. Dabei fällt aber auf, daß die C2H6-Menge vonder 4. bis zur 24. Stunde praktisch gleich bleibt und jedenfalls keinen Gäng zeigt. Unter Berücksichtigung des oben mitgeteilten Ergebnisses der sichnischen Analyse dürfte es sich daher um Fehler bei der Podbianalyse handeln.)

2) 22 mV = 425°0 (Vors.Nr. 1).

Zum Unterschied von den übrigen Propanversuchen wurde dieser Versuch mit frischem Kontakt durchgeführt. Innerhalb von 16 Stun den seigte sich auch bei dieser Temperatur noch kein meßbarer Umsatz. Die Podoianalyse ergab: C4 und C5 nicht nachweisbar. C1 + C2 in nicht meßbaren Spuren, sonet alles C3. Die technische Abalyse ergab zwar für das mittlere C etwas niedrigere Werte als 3, nämlich nach der 1., 2., 4.8 und 16. Stunde die Werte 2,4-2,7-2,6-2,5-2,5, jedenfalls aber ebenfalls keine Änderung des mittleren C innerhalb der Versuchszeit.

3) $24 \text{ mV} = 459^{\circ}\text{C}$ (s. Tabelle 1 und Kurvenblatt 1; Versuche Nr. 3.1 11, 16).

Bei dieser Temperatur ist die Spaltung des Propans bereits deutlich. Aus dem 24-Stunden-Wert läßt sich die Halbwertszeit für den Zerfall unter den vorliegenden Versuchsbedingungen zu etwa 40 Stunden extrapolieren. Der Zerfall dürfte nach G.H. + H.2 C.B. + C.H. erfolgen, wenn auch bei der Untersuchung der KW-Zusenmensetzung die CH. Menge molmäßig anfangs stärker, später weniger hinter der C.H. Menge zurückbleibt, Jedenfalls liegt kein Anzeichen dafür vor, daß das primär gebildete C.H. unter den vorliegenden Bedingungen bereits weiter zu CH. zerfällt, da in diesem Falle die Anzahl der Mole CH4 größer sein müßte. Die bei der Pobianalyse gefundenen geringen Mengen an C.H. und höheren Kohlenwasserstoffen dürften nicht reell sein, da bei dem vorliegenden hohen H. Partialdruck eine merkliche Polymerisation der primären Spaltätücke sehr unwahrscheinlich ist. Nach dem Ergebnis der Podbianalyse nach der 4. Stunde scheint die Spaltung bei dem Versuch 3 m.t dem höheren Produktpartialdruck bereits weiter fortgeschritten zu sein als bei den Versuchen llund 16. Ob diese Partialdruckabhängigkeit allerdings reell ist, muß dehingestellt bleiben.

4) Aus den Versuchen zur Spaltung von n-Hoptan bei 24 mV (s. weiter unten) ergibt sich für die Propanspaltung eine Halbwertszeit von etwa 20 Stunden, also ein nur halb so großer Wert wie oben, doch dürfte obiger Wert genauer sein.

Versuche mit Isooktan bei 20 mV = 391°C (VerseNr. 17).

Vorsuol	nedauer	Sidn.	1.		4		9	2	10.
Zusannei	nsetzung toffe	der Kohlen-	,						
Vol ₉ \$	(Gewo#]	·)) 0H ₄	~.~					•	•••
79	ti **	0 ₂ H6	. 5 440	,	ar s •••	•	400 440	12,0	(6 ₉ 5)
ri	tt	3 18	A 27 439A		====	•	-	18,2	(14,8
. (1		O _A E _{2O}	93,1(87)	96,7(~	94)	97,3(.95)	67,0	(72,5
n	" höl wa	gere Kohlen- eseretoffe	6 ₉ 9(~	13)	3 ₀3(·6)	2,7(5)	2,8	(6,2
Mittler Gasanal		oh tedhnisohe	3.7	· · · · · · · · · · · · · · · · · · ·	4 ₀ 1		3,7	3	,4

Die Zahlen der obigen Tabelle zeigen, daß der Zerfall primär am quarturen C-Atom einsetzt und nach i - CaHla + H2 P 21 - CAHlo erfolgt und nach 1 Stunde schon praktisch beendet. Die Halbwertszeit für diesen Primärschritt dürfte in der Größenordnung von 1/4 Stunde liegen. Das Butan bestand bei der nach 24 Stunden genommenen Probe zu 86 % aus Isobutan. Da das verwendete Isooktan ziemlich rein gewesen sein durfte, zeigt der geringe n-Butangehalt, daß entweder bei der Spaltung selbst oder nachträglich eine gewisse Umeand-lung von Iso- und n-Butan erfolgt, die aber nicht thermodynamischen Gleichgewichtswert erreicht, der bei 391° 32 % Isohutan + 67 % n-Butan beträgt. Dies ist insofern auffallend, als bei niedrigerem Ho-Druck eine Isomerisierung von n-Buten zu Isobutan an K 5058 ohne gfeichzeitige Spaltung möglich ist. Zur Erklärung könnte angenommen werden, das die Erhöhungdes H2-Druckes die Spaltung so stark beschleunigt, während sie die Geschwindigkeit der Isomerisierung nicht beeinflussen kann, das die Goschwindigkeiten beider Reaktionen bei den hier angewendeten H2-Drucken mindestens vergleichbar werden. Es bleibt dann aber immer noch die Unstimmigkeit, daß die oben erwähnte Isomerisierung von n-Butan en K 5058 bereits bei niedrigerer

¹⁾ Bei der Umrechauge von Vol. A in Cew. A wurde angenommen, daß die höheren Kohlenwasserstoffe praktisch aus unzersetztem Oktan bestehen. Fells sie bereits höhere Speltstücke mitenthalten, würden sich die Werte für die Gew. höhere Kohlenwasserstoffe etwas erniedrigen.

Comperatur und geringerer Verweilseit verläuft, als sie hier ange-

Der Weiterzerfall des primär entstandenen Butans erfolgt erheblich langsemer und Ließ sich in der Podbianalyse überhaupt orst nach 24 Stunden nichweiben. Die Halbwertszeit für diese Sekundärreaktion dürfte in der Größenordnung von 60 Stunden liegene Dabei kann Isobutan nur in Fropan + Methan zerfallen, während Äthan nur aus n-Butan entstehen kenn. Bei der Podbianalyse wäre danach das Auftreten von Methan zu erwarten, des vielleicht in dem gefundenen Äthan mitenthalten ist.

Vergleicht man die Spaltung des Iscoktans mit der von n-Heptan bei gleicher Temperatur (s. weiter unten), so erkennt man, daß die Spaltung des gerakettigen Paraffins erheblich langsemer erfolgt als die des verzweigten, und zwar größenerdnungsmäßig 10-mal langsamer, wenn man die Zeiten vergleicht, in denen des mittlere C auf die Hälfte der C-Zahl des Lusgangsstoffes gesunken ist.

Versuche mit n-Heptan.

Boi der Auswertung der Gasanalysen mußte bel diesen Versuchen tellweise eine gewisse Korrektur angebracht werden. Der Dampidruck von n-Heptan beträgt nämlich bei 20° etwa 40 mm gegenüber einem errechneten Partialdruck nach der Entspannung der Bombe von 56 mm, falls kein Heptan umgesetzt ist. In den Fällen eines geringen Umsatzes muß daher ein Tell des Heptans sich auf dem Wasser der Analysenflaschen kondensieren und sich dedurch der Analyse entziehen. Dies außert sich in einem starken Ansteigen des Wortes von Kohlenwasserstoff + Zunahme von der nullten bis zur 24. Stunds bei den bei tieferer Temperatur durchgeführten Versuchen, während ohne Eintreten einer Kodensation dieser Wert konstant bleiben mußte (wie dies bei den Propan- und Isooktanversuchen auch tataachlich beobachtet wurde), de ja die Reaktion On H_{2n} + 2 H₂ = Cn'H_{2n'}, 2 + Cn' H_{2n'} > 2 ohne Volumenderung erfolgt. Aus dem erreichten Endwert von Johlenwasserstoff + Zunahme einerseits oder aus der bekannten Ausgangsmenge an Heptan und dem Versuchedruck andererseits ließen sich aber die jeweils kondensierten Reptanmengen abschätzen und in Rechnung setzen. Die folgenden Tabellen enthalten die so korrigierten Werteeder

1) $18 \text{ mV} = 357^{\circ}\text{C}$ (Vers - ir. 13).

Bis zur 8. Stunde war bei dieser Temperatur nach dem Ergebnüs der technischen Gasanalyse noch kein merklicher Umsatz festzustellen (mittleres C nach O, 1, 4, 8 Stunden 7,4 - 7,9 - 6,5 - 6,8). Nach 24 Stunden ist die Spaltung aber bereits deutlich (mittleres C = 4,4). Eine Untersuchung des beim Entspannen des Autoklaven erhaltenen Tiefkühleranfalles zeigt ebenfalls, daß Spaltung eingetreten ist, es wurden nämlich 1 Gaw. & CzH8 und 27 Gew. & C4H1O gefunden. Von den niedrigeren Kohlenwasserstoffen ist beim Entspannen offenbar ein großer Teil verloren gegangen, da man eine der C4-Menge mindestens äquivalente Cz-Menge erwarten sollte. (Der Maximaldruck des Autoklaven hatte 215 atm betragen, der Druck nach 24 Stunden 162 atm; von den eingebauten 100 glieptan hätten demnach noch insgesamt 75 g Kohlenwasserstoffe vorhanden sein müssen. Es wurden aber nur 30 g Kondensat erhalten

Bemerkenswert ist die starke Isomerisierung des Butans. Im Butan des Kondensates wurden nämlich 65,5 % Isobutan gefunden, während nach der Lage des thermodynamischen Gleichgewichtes nur 35 % Isobutan zu erwarten wären. Teilweise Butanverluste beim Entspannen können wegen des tiegeren Siedepunktes des Isobutans den gefundenen Isogehalt höchstens herabsetzen. Man muß daher woh wohl annehmen. daß sich das Heptan selbst an dem Kontakt zunächst isomerisiert (hierfür liegt das Gleichgewicht stärker auf der Iso-Seite als für Butan) und daß dann erst die Spaltung einsetzt. Die isomerisierende Wirkung des K 5358 ist ja bekannt. Ferner werden Isoparaffine leichter gespalten als Normalparaffine (vgl. die Bemerkung am Schlusse des Abschnittes über den Isooktanversuch).

2) $20 \text{ mV} = 391^{\circ}\text{C}$ (vgl. Tabelle 2 und Kurvenblatt 4; Vers,-Nr. 12).

Bei dieser Temperatur ist bereits in weniger als 8 Stunden das Heptan zu 50 % gespalten. Genaue Angaben über die Halbwertszeiten lassen sich bei den Heptanversuchen nicht machen, da die höheren Kohlenwasserstoffe über C4 nicht getrennt werden. Die in ihnen enthaltenen C5- und C6-Mengen sind aber offenbar anfangs nur gering, da im Anfangsteil der heaktion nur wenig C1 und C2 auftritt. Die Spaltung erfolgt anscheinend im wesentlichen in der Mitte der Kette. Am Ende des Versuches bestanden die höheren Kohlenwasserstoffe allerdings hauptsächlich aus C5. Im einzelnen sind die Ergebnisse nicht ganz widerspruchsfrei, z.B. ist nach den Versuchen mit ropan bei 20 mV noch kein Zerfall des ropanselso noch keine Abnahme der Propanmenge mit fortschreitender Spaltung des Heptans zu erwarten; ferner dürfte der Iso-Gehalt des Butans mit nur 33 % zu niedrig gefunden sein, da bei den höheren Temperaturen (s.o.) wieder höhere Isobutangehalte

godunden werden 1).

3) 21 mV = 408°0 (vgl. Tabelle 2 und Kurvenblätter 2 u. 4; Vers. Hr. 14).

In diesem Falle macht sich schon deutlich eine Reaktion während der Anheizperiode bemerkbar. Die Halbwertszeit der Heptanspeltung dürfte bei etwa 3 Stunden oder etwas darunter liegen. Eine merkliche Spaltung des primär entstandenen Butans scheint innerhalb von 24 Stunden noch nicht einzutreten. Auch in diesem Falle ergeben sich einige Widersprüche (geringe Abnahme der C3-Menge, Fehlen von C1). Die hohe C2-Menge erklärt sich wahrscheinlich aus einer Resktionsfolge C7H16 + H2 C5H12 + C2H6; C5H12 + H2 C3H8 + C2H6.

4) 22 mV = 42500 (vgl. Tabelle 3 und Kurvenblätter 2 u. 4; Versuche Nr. 2, 5, 7, 10).

denen 3 genauer untersucht wurden (Podbianalysen). 2 Versuche (7 und 10) stimmen gut überein, sodal sie sur Zeichnung der Kurven gemittelt wurden. Versuch 5 stimmt qualitativ mit Versuch 7 und 10 überein, seigt aber bei gleichen Zeiten jeweils stärkere Spaltung, was vielleicht auf höhere Kontaktaktivität in diesem Versuch zurückzuführen ist. Bis sur Erreichung der Versuchstemperatur ist des Heptan sehen praktisch versehwunden, im weiteren Verlauf zeigt sich im wegentlichen nur noch der Zerfall des Butans und zwar wehrscheinlich nach

 $1-0_4 H_{2O} + H_2$ $C_3 H_8 + C H_4$ $n-C_4 H_{2O} + H_2$ $C_2 H_6$ (denotion violation obtains of $C_3 H_8 + C H_4$).

Bei Versuch 7 + 10 ist zu Anfang vielleicht noch eine Andeutung des U5-Zerfalls zu erkennen. Das primär entstandens U5H12 zer- fallt denach jedenfalls leichter als U4H10, wobei über den Isomerisierungsgrad des U5H12 allerdings michts ausgesagt werden kann. Aus der Analyse der Spaltpredukte ist der Zerfall von n-Butan und Isobutan nicht voneinander zu trennen. Der Unterschied der Hosktionegeschwindigkeit der beiden Isomeren scheint nicht so groß zu sein, wie bei n-Heptan und Isooktan mit seinem quartären E-Atom. Be ist auch derauf hinzweisen, das nech dem bei der

1) Bei gleichzeitigen Versuchen zur Bensinierung von Bruch der Gasöl mit K 5058 (verschiedene Pillengrößen) wurden stark schwankende Isobutangehalte gefunden. De hierbei die Roellen Schwankungen nur gering sein dürfen, können die betreffenden Werte ein Maß für die Unsicherheit der Isobutanbestimmungen zu dem damaligen Zeitpunkt abgeben:

Ofon-Tomp.	10 mV	Ofengas	44-74% Iso im C	
Ofer-Yemp.	19,5 mV	Produktges Gelüstes Gas Ofengas Produktges Gelüstes Ges	33-73 " 30-72 " 31-89 " 54-79 " 31-78,5 "	15 % ± 20 % ± 21 % ± 29 % ± 12 5% ± 24 %.

No muß also mit einer Unsicherheit der Isobutanbestimmungen von mindestens ± 20 % gerechnet werden.

Isooktenspeltung Go lagten unter den vorliegenden Versuchsbedingungen die Geschwindigkeiten von Isomerisierung und Spaltung möglicherweise von gleicher Größenordnung sind, wodurch sich der Unterschied in der Spaltgeschwindigkeit der beiden Isomeren vermischen mißte. Die Halbwertszeit des C4-Zerfhlis dürfte zwischen 5 und 10 Stunden liegen.

5) 24 mV = 4000 (vgl. Tabelle 4 und Kurvenblätter 3 u. 4; Vers. 6).

Anheizgeschwindigke.t beschders gering war, ist sogar das Buten schon völlig verschwunden, im folgenden beobachtet man nur noch den Zerfall des Propans. De nach dem Ergebnis der Propanversuche bei 24 mV noch kein Zerfall dos Athans zu erwarten ist, dürfte das Ansteigen der Chi-Menge über die C2H6-Mengen nicht reell sein. Möglicherweise ist der CH4-Wert der 1. Stunde zu niedrig. Die hohen CH4-Mengen scheinen darauf hinzudeuten, das bei der hohen Temperatur die Abspaltung von endständigen C-Atchangegenüber der Spaltung in der Mitte der Kette stärker in den Vordergrund tritt (z.B. C7H16->CH4 + C6H14; C5H12->CH4 + C4H10; n-C4H10->CH4 + C3H3). Die Beobachtungen bei den verschiedenen Temperaturen stimmen jedenfalls mit der ellgemeinen Erfehrung der Hydrierung überein, daß sich mit steigender Kontakttemperatur die Zusammensetzung der Vergasung immer mehr in Richtung auf die Methanbildung verschiebt.

Für den Mechanismue der Spaltung von n-Heptan an Wolframsulfid oder anderen isomerisierenden Katalysatoren in Gegenwart von Wasserstoff ergibt sich aus den vorstehenden Versuchen folgendes mögliche Schema

1) Hauptreaktionsweg über "2-Methyl?-Isomerisierung:

2) Nebenreaktionswell über "3-Mathyl"-Isomerisierung:

Bevorgugt wird hierbut wahrsoneinlich die Abspaltung der längsten

Kotte am tertiaren C-Atom, den. die Abspaltung in C3 H8 t n-C4H10. Die Spaltung den Butans (in Mammer) tritt erst bei Temperaturen über 21 mV stärker in Erscheinung.

3) Mothanabspaltung and höheren Kohlenwasserstoffen als Butan bei höherer Temperatur (etwa 24 mV) ist an verschiedenen Stellen des obigen Schemas mögläch.

Versuche mit Cetan bei 22 mV = 425°C (vgl. Tabelle 4 und Kurvenblätter 3 u. 4; Vers. Nr. 8).

Die Spaltung von Cetan erfolgt noch erheblich rascher als die von n-Hoptan bei gleicher Temperatur. Nach einer Stunde ist das Cotan, wie sich aus dem mittleren C ergibt, bereits durchschnittlich in etwa 4 Bruchstücke zerfallen, Hepten dagegen erst in etwa 2 Bruchstücke. Im wolteren Verlauf sinkt sogar das mittlere C der Spaltprodukte des Cetans unter das mittlere C bei Heptan. Die Primarresktion (Spaltung in 2 Bruchstücke) ist beim Cetan boretra innorhalb der Anheizperiode beendet. Die Spaltergebnisse lassen sich ebenfalls nach dem obigen Schema deuten: Die außerordentlich hohe Ca-Menge last sich durch eine Aufeinaderfolge von "2-Wethyl"-Isomerieierung und Propanabspaltung bis zum völligen Abbau der Getankette erklären, durch "3-Methyl"-Isomerisierung kenn daneben Butan ontstehen, das bei der Reaktionstemperatur bereits weiter zerfällt. Auf diese Weise läßt sich auch der auffallend hohe Propangehalt der Vergagung etwa gegenüber den Heptanversuchen erklären. Der Isogehalt des Butans ist praktisch der gleiche wie bei Heptan und der gleichen Temperature

Gemoinson mit

Dr. Donath, Dr. Nonneamacher,

Dr. Rotter, Dr. Meier.

3ez, Reitz

Versuch	1: Sp 3: 2u 11; 16;	altang vo	n Propar	bei 24 mV wasserstoffe	(459°) Von d	ler 1.	bis sar 32	• "	1587 ade von 29 bis	51 Vol. 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Vorsuchsdazer Stdn. Versuch-er.	3	11	2 16 3	3 11	16	3	8 11 16	16 3	24 3 11	32 16 3
Zwsammensetzang der Kohlenwasserstoffe Volum-% CH ₄ C ₂ H ₆ C ₃ H ₈ - C ₄ H ₁₀ höhere KW.		11 95,0 84 3,2 4 1,8		5,7 25,7 68,6 100	13,5 79,1 4,5 2,9		8,2 15,7 43,0 69,7 52,1 4,4 3,6 2,0 1,3	¥==≤ <u>-</u> =	21,3 28,9 47,0 2,2	2 3, 0 34,7 34,7 7,6
Mittleres C nach techn. Analyse Podbianalyse	2,8	2,8 2, 3,05 2,		2,6 2,7 2,6 3,0	2,5 3,0		2,5 2,3 2,75 2,6	2,05	- 2,2	2,0, 1,8 1,91,
-C - Bilanz % C im CH ₄ C2H6 C3H8 2)		4,0 96,0		0,7 9,2 90,1	====		1,6 22,4 76,0		2	9,9 8,4
Aus 100 Mol. Aus- gangspropan wer- den erhalten Mol. CHA C2H6 C3H8		6,0 96,0		2,1 13,8 90,1		e [*]	4,8 33,6 76,0		29 42	2,7 2,6
Summe Mol. % KW.		102,0		106,0			114,4		134	

I) Tiefkühleranfall beim Entleeren mittleres C 2,6

²⁾ Die bei der Podbianalyse gefandenen Anteile an C4H10 und höheren Kohlenwasserstoffen wurden hierbei zum

Spaltans von n-Heptan bei 20 und 21 mV Tabelle 2:

20 mV (391°C

Zanahme der Kohlenwasserstoffe von der 1. bis 24. Stande von 9 bis 28,6 Vol. % (?)

Versuchsdauer Stdn.	1	4		8		C Minima and American	24	Kondensa
CH4 Vol.% (% C/Mol.% 3)) C2H6 C3H8 C4H10 höhere Kohlenwasserstoffe Summe Mittleres C nach technischer Analyse	~ 6	~ 4=5	2,7 %0: 5,2 37,5 27,3 27,3 100,0	(2,6 " (28,2 " (27,4 "	/ 4,9 Mol.%) / 9,1 ") /65,8 ") /47,9 ") 175,6	25,1 " (38,8 " (9,5 " (9,2 % C / 32,2 Mol. 20,9 " / 48,8 " 54,2 " / 94,8 " 15,7 " / 18,5 "	29,3 Gew.) 53,4 2)) 17,3 1)
Podbianalyse 21 mV (408°C) Zunahme der KV. von der	O. bis 2	4. Stun		bis 24 Vol.	4 .			
Versuchsdauer Stunden	0	47		1	4	8	- 24	Kondensat
Zusammensetzung der Kohlenwasserstoffe Vol. % CH ₄ C ₂ H ₆ C ₃ H ₈ C ₄ H ₁₀ höhere KW.	1	 38 3,5 8,5		17,9 24,3 11,2 46,6	20,8 32,6 23,5 23,1	25,0 34,6 25,9 14,4	43,6 23,6 26,2 6,6	;
Littleres C nach technischer Analyse nach Podbianalyse	~	5 4,8		~ 5 4,3	4,7 3,7	3,3 3,4		11111111111111111111111111111111111111
C - Bilanz: % C von C2H6 03H8 C 4H10 in höheren KW.	2	3,8 2,9 3,3		8,3 16,8 10,4 64,5	11,2 26,3 25,3 37,2	14,6 30,2 30,1 25,1	26,8 23,4 34,6 13,2	35,6 52,2 5) 12,2 6)
Aws 100 Mol. % Awsgargshepten werden erhalten Mol % C2H6 C3H8 C4H10 höhere KW.	5	5,5 5,1 5,5	The second secon	29.0 39.2 16.2 75.2	39,2 61,3 44,3 43,4	51,2 70,5 52,6 29,3	100,8 54,6 60,5 15,4	e, i
Summe Mol % KW.	3.	46		161,5	183	203,5	231	

^{[] 12;0} C5H12 5,3 % höhere KW.

^{2) 33,0 %} Isobatan im Batan

³⁾ die aus 100 Mol % Ausgengshepten erhalten werden

⁴⁾ enthält aber die Anheizperiode 5) 44,5 % Isobatan im Batan

^{6) 10,85 \$ 05}E12, 1,35 % hohere

Tabelle 3: Spaltung von n-Hepten bei 22 mV (= 425°C)

Yersuch 2: Zenahme der Kohlenwasserstoffe von der O. bis zur 32. Stunde von 20.6 bis 31,4 Vol.%

10: " " 15,2 " 25,6 "

10: " " 15,2 " 25,2 "

Versachsdazer Sidn. Versach-Mr.	S	2	5 ========	7 10	2	2	4 5 	7=====	lo =====	2	5	8 7	10	16 2 -===	, 5 =====	24 7 =======	10	52 2	Konden 7	10
Zasammensetsung der Kohlenwasserstoffe Volum-A CH4 C2H6 C3H8 C4H10 höhere KW.			46,7 33,4 15,9	4,1 6,5 15,3 13,6 43,5 39,5 29,0 25,9 8,1 14,6	A to Par """ The Manual Property of the Party of the Part		48,3 29,4 21,4 Bpuren	12,9 17,8 24,2 38,3 6,9	, .	We will be seen a few to the seen of the s		12,3 22,0 44,6 17,7 3,4			20,1 42,7 37,3	21,2 35,2 31,4 10,0 2,2	19,1 36,7 57,5 6,7 Spare	2	" -	
Mittleres C nach technischer Analyse Podbianalyse	3,4	3,0	3,05 2,8	3,25 3,3 3,4	3,0	2,9	2,85 2,7	2,8 3,15	2,85	2,65	2,6	2,6 2,8	2 , 65	2,5	2,1	2,2	2, 2	2 , 2		: 4
C - Bilanz % C im CH4 C2H6 C3H8 C4H10 in höheren KW	****		33,2 35,6 22,7 8,5	1,6 3,6 37,0 52,5 20,3	Company of the Compan		35,6 32,5 31,5 0,4	4,1 11,3 23,0 48,6 13,0				4,4 15,6 47,5 25,2 7,3			9,5 39,2 51,5	30 43 14	,5 ,5 ,2 ,0		21 g) 43,61 52,8 3,6	48,5 48,5 48,6 2,7
Ans 100 Mol-# Ausgangs- heptan werden erhalten Mol-# CH4 C2H6 C3H8 C4H10 hohere KW.		and the contract that the cont	116,2 82,9 39,7 9,9	11,2 30,1 86,2 51,8 23,7	man and sanded faith of a cold fair a sand the fair and a sand the fair and a sand the fair and a sand the fair	The A PART CONTRACTOR OF THE STATE OF THE ST	124,5 75,7 55,3			ment value from the property of the property o		30,8 54,7 110,7 44,1 8,5			65,1 137,2 120,0	108 108				
Samme Mol. % KW.			248,7	203,0	-		255,8	222,0)			248,8			322,3	296	,6			

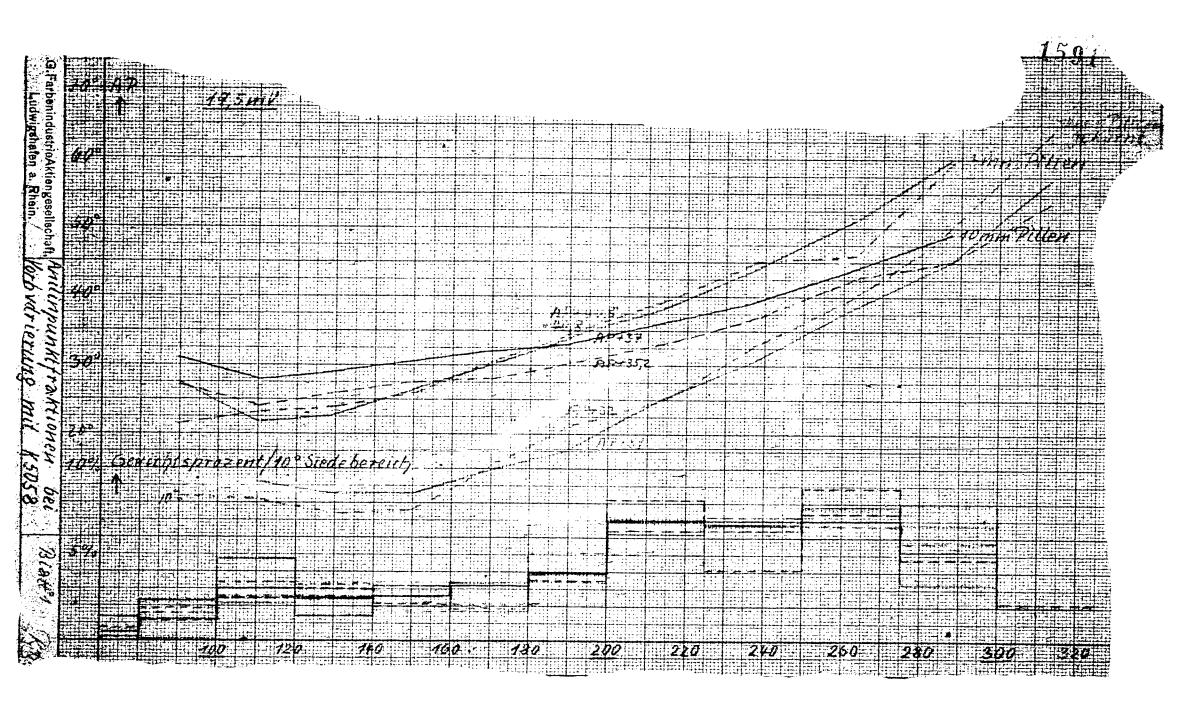
^{1) 53,5 %} Isobatan im Batan

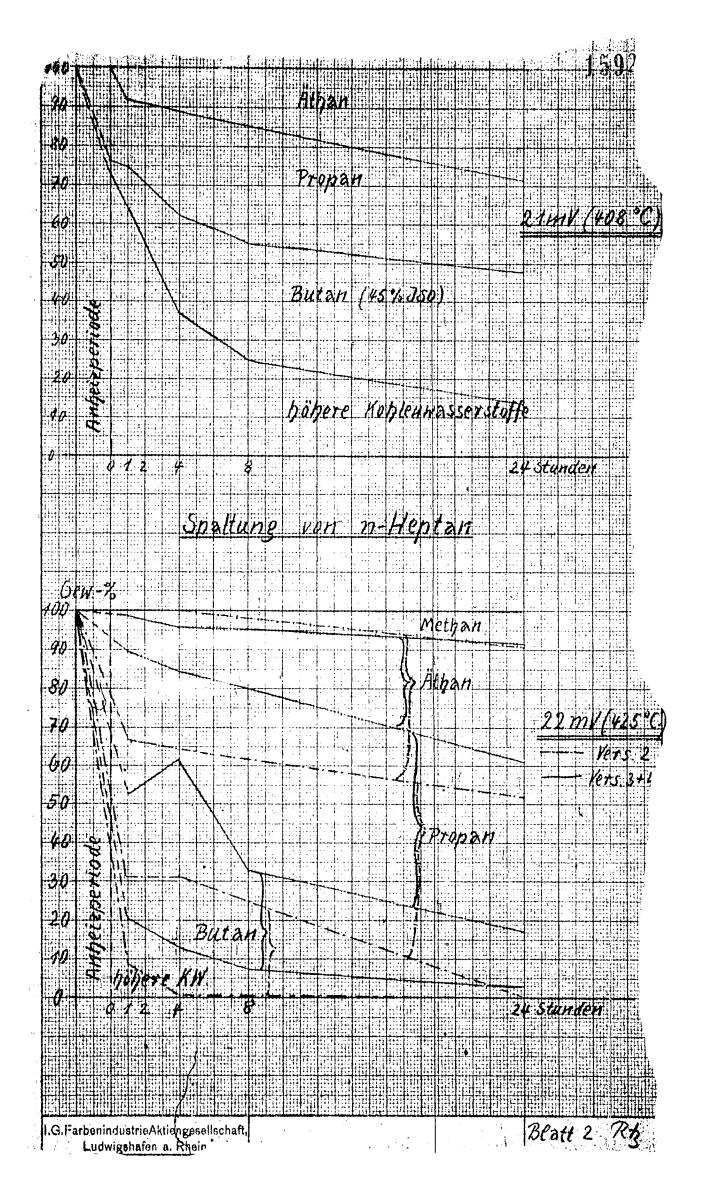
²⁾ Das mittlere C der höheren KW. warde hierbei = 5 angenommen.

Tabelle 4: Spaltung von n-Heptan bei 24 mV und von Cetan bei 22 mV.

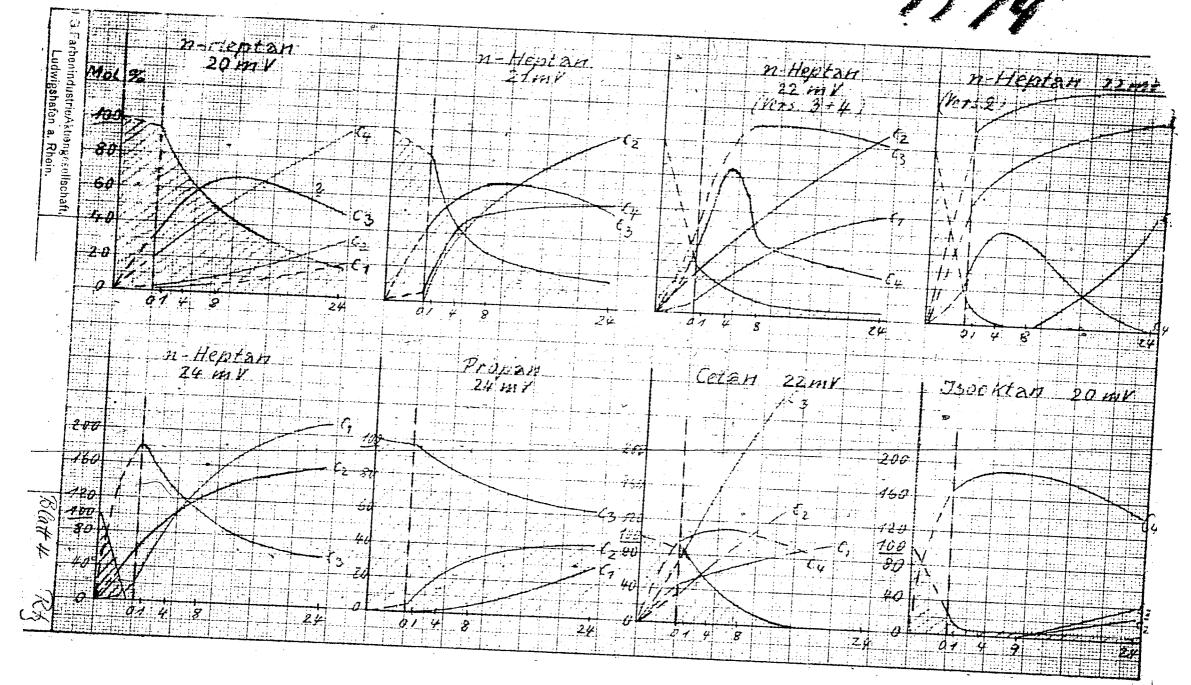
Reptan bei 24 mV (459°C)
Zunahme der Kohlonwasserstoffe von der 1. bis 24. Stunde von 26 bis 40 Vol der 1.

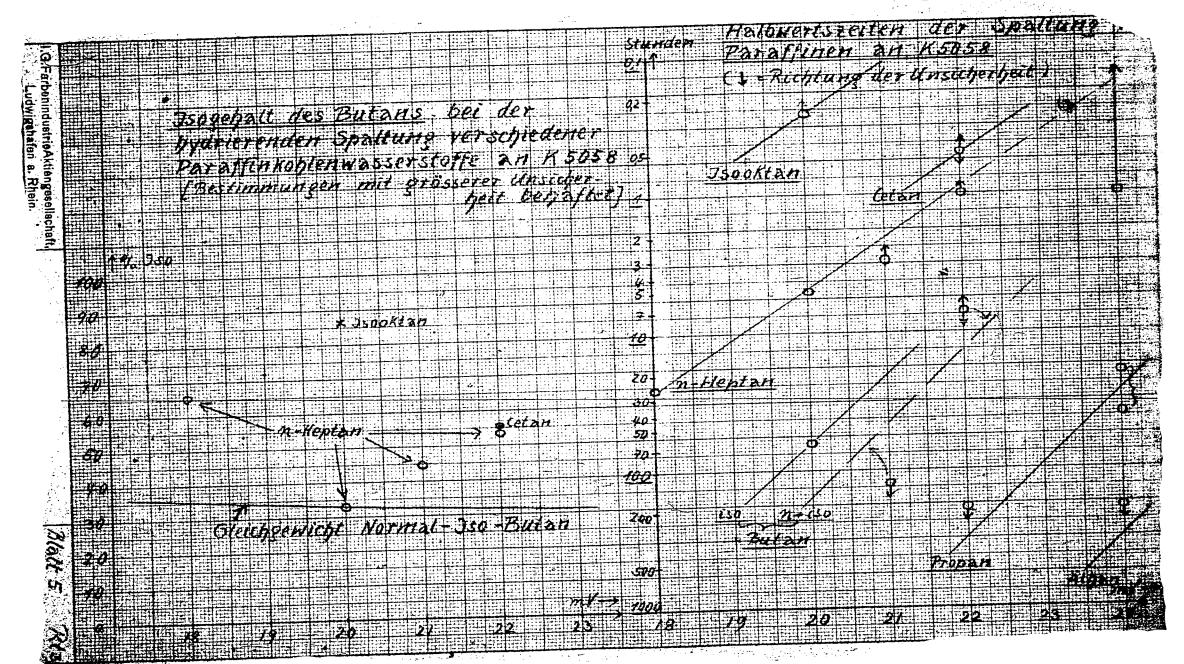
to be seen to the detailed below to see and more fitting and the seen		26	b18 40 V	01.%	1
Versuchsdauer Standen	1	4	8	24	Kongonsat
Zusammensetzung der KW. Vol.% CR4 C2H6 C3H8 höhere KW.	14,3 23,1 62,5	57,0 30,5 32,5	35,3 31,4 33,3	49,5 37,5 13,0	
Mittleron C nach technischer Analyse Podbisanalyse	2,4 2,5	2,1	1,9	1,6	
O-Bilans % O in CH ₄ C ₂ 36 C ₃ 38	5,8 18,5 75,7	18,9 31,2 49,9	17,8 31,8 50,4	30,3 45,8 23,9	
Aus 100 Mol. % Ausgangs- heptan werden erhalten Mol. % OH ₄ C2H6 C3H8	40,6 64,7 176,6	132,3 109,2 116,5	124,6 111,3 117,6	212,1 160,6 57,8	
Summe Ecl. & KW.	281,9	357,0	353,5	430,5	


Oetan bei 22 mV (425°C)


Zunahme der Kohlenwasserstoffe von der 1. bis 24. Stunde von 20

				bis 40	Vol.%
Versuzhedener Stunden		4	8	24	Konden-
Zusemmensetzung der KW. Vol. % CH4 C2H6 C3H8 C4H10 höhere KW	12,5 11,5 26 28 22	6,5 20 34 26 13,5	14 17 43 21		67,5 29 3,5
Mittleres () nach technischer Analyse 	~4 4.5	~-3 3,9	2,7 3,1	2,0	
C-Bilans: % C im CR _A C2H6 C3H8 C4H10 in höheren KW	3 5 17 25 ~50 \	2 10 26 27	4 ₀ 5 11 41,5 27 ~16		59,3 34,8 5,9
Aws 100 Mol. Cetan werden er- halten Mol. CH4 C2H6 C3H8 C4H10 höhore KW		32 80 139 108 ~56	72 88 222 108		· · · · · · · · · · · · · · · · · · ·
Summe Mol.% NV.	~360	~415	~515		- -


¹⁾ mittleres C = 10 angenommen


^{2) 54.5 %} Isobatan im Batan

		We	1/4/-		
		Ai	4211		
S S S S S S S S S S S S S S S S S S S		Py	ensa		
20 3					
				24	Stunden
	5,728.4	SUH Z	von n-He	ntan ti	24 1711
	dethan				Athan
ii,fj /fi-fj& 	alesteniaresterilistes				
10/11/1	Althan				Propan
30 80 76	Att pari				Propan
30 30 74 90	177		72.F	786	
80 74 80 300 14 80 8 8 8	177	tade	But	и (36.	
40 \(\hat{\chi}\)	Propan uran uran usew 250	it you will de	807	и / 86	
40 \(\hat{\chi}\)	Propan Méan Méan Sew 230)	Athericade	Butz		
on despited to the second seco	Propan Wan 250	Anthericade			
40 State / Subject	Propan Wan 250	Antherspendae	hallers.		

