II. EQUIPMENT AND METHOD OF OPERATION

The catalyst, equipment, and method of operation were identical with Run 49 as described in Partial Report No. 371/

except	that	the	feed	rate	was	reduce	d :	to	two-thirds	the	value
previou	ısly u	ısed.	. Ope	erati	ng c	onditic	ns	we	ere:		
			Press Tempe		re		-	ps o _F	ig		

Fresh Feed 10 MCFH Recycle Ratio

^{1/}Experiment No. TDC-802, January 10, 1951.

TABLE I

SUMMARY OF YIELD DATA

Alan Wood Catalyst, 400 psig, 650°F.

Period 51-A B C D E	Hours on Stream 8 32 56 80 104	Average Catalyst Age, Hrs. 8	Rates, Fresh Feed 9.5 10.4 11.4 10.8 10.7	MCFH Re- Cycle 10.6 10.9 11.7 11.5 12.0	Inlet Velocity Ft/Sec. 0.66 0.66 0.71 0.69 0.69	Bed Depth Ft. 18.5 20.0 19.6 19.1 19.8	Space Velocity v/hr/v 732 755 843 819 777	Yield of C3+, #/MCF of H2+C0 Fed 10.43 9.81 9.40 9.76 9.51	Yield Basis ¹ Brownsville Bb1/Day 8212 7637 7337 7659 7496
51-1	266	174	10.2	11.4	0.65	21.7	683	9.53	7129
51-2	450	272	10.4	11.3	0.67	22.6	664	9.08	6940
51-3	643	377	9.7	10.8	0.62	24.2	578	9.08	68119
51-4(2)	782	438	10.1	12.3	0.68	23.6	624	8.30	6158
<u>51-5</u>	854	470	10.1	11.9	0.66	22.9	644	8.72	6608
48-1	190	137	16.5	17.2	1.08	11.2	2143	7.04	5308
49-1	341	192	15.4	15.5	1.04	21.0	1074	8.37	6386
49-2	497	298	15.9	23.5	1.36	19.0	1214	8.21	6277
46-1	204	168	16.6	18.7	1.07	8.55	2825	5.76	4227
46-2	369	183	16.9	17.7	1.05	10.55	2314	6.46	4805
46-3	537	162	16.4	17.2	1.05	10.99	2178	6.64	5003
	nd Run D=2 47 119 191 263 349 456 481 652 695	201	3.62 3.60 3.62 3.63 3.65 3.65 3.60 3.59 3.61	3.75 3.68 3.64 3.58 3.66 3.64 3.60 3.64	0.47 0.46 0.46 0.48 0.55 0.45 0.47	12.5 12.3 11.8 11.8 11.0 11.8 11.8 11.5 11.3	851 866 922 926 1003 904 906 946 966 922	9.95 9.63 8.71 8.49 8.48 8.48 8.31 7.92	7783 7576 6498 6397 6285 6098 6356 6123 5933 6229

⁽¹⁾ Indicated production basis Brownsville Design Feed Rate

⁽²⁾ Water Injected into Combined Feed.

These conditions were held essentially constant throughout the run. During the periods BB and CC. fresh feed rates were reduced to 7 MCFH and in periods FF through KK (Hours 643-782) water was injected into the feed preheater at a rate of 30 lbs./hr.. corresponding to 6 mole per cent of the fresh feed. This approximates the quantity which would be present if raw synthesis gas were fed directly from the generator to the reactor.