Hydrogen cyanide is removed from a gas stream by
(a) contacting the stream with an aldehyde R-CHO (where
R = H or 1-3 C alkyl) or a precursor thereof under conditions
to remove the bulk of the HCN and produce a stream of
reduced HCN content; and
(b) contacting the latter with an aq. soln. contg. ammonium
polysulphide and/or sodium polysulphide under conditions
to convert HCN, and produce a stream further reduced
in HCN content.

USE/ADVANTAGE
The method is used to treat gas from coal gasification;

The method is used to treat gas from coal gasification it provides an optimum balance of prevention of cyanide complex formation, corrosion protection and effluent salt content adjustment.

OPTIONAL FEATURES

Formaldehyde or paraformaldehyde is used in step (a),

at 100-270°C, 300-600 psig. pH 6-9.
The polysulphide in step (b) is 0.01-0.05 moles/1, 25-110

°C., pH 7-9; elemental sulphur may be added.
Ammonium thiocyanate produced may be hydrolysed,

e.g. at 200-300°C., gases stripped out, and finally biotreated in a nitrifying-denitrifying environment; alternatively NaOH may be added to release ammonia for recycle or recovery, and the thiocyanate destroyed by biotreatment (to produce

sodium sulphate solution, nitrogen and carton dioxide).

REACTIONS The reactions for the process may be shown as follows:

R

(a) HCN + R-CHO
$$\longrightarrow$$
 HO-C-CN

(b) HCN +
$$(NH_4)_2S_X + NH_3 \longrightarrow NH_4SCN + (NH_4)_2S_{X-1}$$

or HCN + $Na_2S_X + NaOH \longrightarrow NaSCN + Na_2S_{X-1} + H_2O$
(where x = 2-5).

US4572826-A+

EXAMPLE The bulk of the fly ash was removed from a gas stream from the partial combustion of coal, the gas containing by wt. 2.7% H₂, 1.4% H₂S, 0.02% NH₃ and 0.02% HCN. The stream was contacted first with aq. 0.1 wt.% HCHO, to remove fine particles and convert the bulk of the HCN, and then with 0.01N aq. ammonium polysulphide at pH 8, 100°C, where ammonium thiocyanate was formed.(4pp1644RKMHDwgNo0/0).