USE/ADVANTAGE

```
E19 H04 J04
92-277779/34
                                               ESSO 91.02.12
EXXON RES & ENG CO
                                              *EP 498976-A1
   91.02.12 91EP-301093 (92.08.19) B01J 23/84, C07C 1/04
Cobalt-rhenium titania catalysts - with high volumetric productivity
for hydrocarbon synthesis (Eng)
 C92-123581
                                                  R(DE GB NL)
Addnl. Data: MAULDIN C H
 A hydrocarbon synthesis catalyst (I) comprises:
     (a) 10-25 wt.% Co:
     (b) Re, in a Re: Co wt. ratio greater than 0.05:1; and
     (c) a TiO2 support, pref. contg. more than 50 wt.%
 TiO2.
     The catalyst has a volumetric productivity (Pv) in
 cm3 CO conversion/hour/cm3 catalyst, for hydrocarbon
 synthesis from H2 and CO, satisfying the relationship 4C-
 = 4 + (0.008) Pv where 4C is wt.% of 4C or less hydro-
carbons.
     Prepn. of (I) is also claimed and involves contacting
 the support with cpds. of Co and Re, decomposing the Co
```

and Re cpds. and repeating these stages at least once.

Catalysts have good selectivity, activity and volumetric productivity in hydrocarbon synthesis esp. the prodn. of 5C+ hydrocarbons from synthesis gas, CO and H₂.

PREFERRED EMBODIMENTS

Pv is at least 500 at 200° C and H₂:CO ratio of 2:1.

The rutile:anatase ratio of titania is at least 2:3.

The cpds. are decomposed by treatment with a H-contg. or O-contg. gas or H-contg. followed by O-contg. gas.

The wt.% Co applied in each step is no more than 8 wt.% giving less than 80% pore vol. filled.

EXAMPLE

nation cycles to give a Co loading of 13.3 wt.% had Pv of 862 and 77 wt.% CO conversion at 20° C catalytic synthesis. This compared with Pv of 454 and 71 wt.% conversion for a Co-Zr-SiO₂ catalyst.(14pp2274SLDwgNo0/4)
SR:No-SR.Pub

A Co-Re on TiO2 catalyst, prepd. by multiple impreg-

EP-498976-A